Roll No.

Total Pages: 4

GSE/M-20

MATHEMATICS

(Ordinary Differential Equations)

Paper: BM-122

Time: Three Hours] [Maximum Marks: 26

Note: Attempt *five* questions in all. Question No. 1 is compulsory. Select *one* question from each section.

Compulsory Question

- 1. (a) Write the solution of exact differential equation M dx + N dy = 0.
 - (b) Solve the equation $(y px)^2 = 1 + p^2$. 1½
 - (c) Find the solution of equation $\frac{d^4y}{dx^4} a^4x = 0$. 1½
 - (d) Write the condition if e^x is a particular solution of

$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R.$$

(e) Define Total differential equation. 1

SECTION-I

2. (a) Solve the equation

$$(xy^2 + 2x^2y^3) dx + (x^2y - x^3y^2) dy = 0.$$
 2½

(b) Solve the equation

$$\left(y + \frac{y^3}{3} + \frac{x^2}{2}\right) dx + \frac{1}{4}(x + xy^2) dy = 0.$$
 2½

- 3. (a) Solve the differential equation $y = -px + x^4p^2$. $2\frac{1}{2}$
 - (b) Solve the equation $\sin px \cos y = \cos px \sin y + p$, and obtain the singular solution. $2\frac{1}{2}$

SECTION-II

- 4. (a) Find the orthogonal trajectories of the cardioid $r = a(1 \cos \theta)$, where a is the parameter.
 - (b) Solve the equation $\frac{d^2y}{dx^2} + y = \sec x$.
- 5. (a) Solve the equation $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$.
 - (b) Solve the differential equation

$$\frac{d^2y}{dx^2} + y = \sin x \sin 2x.$$

SECTION-III

6. (a) Solve the equation

$$x^{2} \frac{d^{2} y}{dx^{2}} - 2x(1+x) \frac{dy}{dx} + 2(1+x)y = x^{3}.$$
 2½

(b) Solve the equation by removing the first derivative :

$$\frac{d^2y}{dx^2} - 2\tan x \, \frac{dy}{dx} + 5y = (\sec x)e^x.$$
 2½

7. (a) Solve the equation by variation of parameters:

$$\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}.$$
 2½

(b) Solve the equation by changing the independent variable:

$$\frac{d^2y}{dx^2} - \cot x \frac{dy}{dx} - y \sin^2 x = 0.$$
 2½

SECTION-IV

8. (a) Solve the simultaneous equations

$$t\frac{dx}{dt} + y = 0$$

$$t\frac{dy}{dt} + x = 0$$

given that x(1) = 1, y(-1) = 0.

(b) Solve the equation

$$\frac{dx}{z} = \frac{dy}{-z} = \frac{dz}{z^2 + (y+x)^2}.$$

9. (a) Solve the total differential equation

$$2yz \ dx + zx \ dy - xy(1+z) \ dz = 0.$$
 2½

(b) Solve the equations:

$$\frac{dx}{dt} + 5x + y = e^t.$$

$$\frac{dy}{dt} - x + 3y = e^{2t}.$$